

XR5026

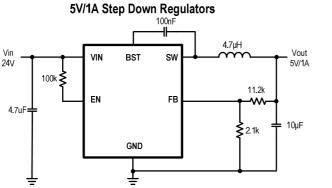
40V/1A, 1.1MHz Synchronous Step-Down Converter

DESCRIPTION

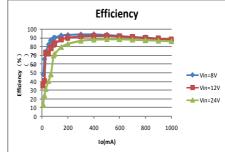
The XR5026 is a current mode monolithic buck switching regulator. Operating with an input range of 4.7V~40V, the XR5026 delivers 1A of continuous output current with two integrated N-Channel MOSFETs. The internal synchronous power switches provide high efficiency without the use of an external Schottky diode. At light loads, the regulator operates in continual conduction mode to maintain low output ripple. Current mode control provides tight load transient response and cycle-by-cycle current limit.

The XR5026 guarantees robustness with short-circuit protection, thermal protection, current run-away protection, and input under voltage lockout.

The XR5026 is available in 6-pin SOT23-6 package, which provides a compact solution with minimal external components.


FEATURES

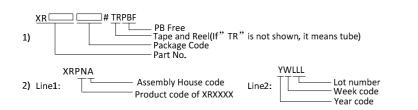
- 4.7V to 40V operating input range 1A output current
- Up to 93% efficiency
- FCC at light load
- Internal Soft-Start
- 1.1MHz switching frequency
- Input under voltage lockout
- Available in SOT23-6 package
- Current run-away protection
- Short circuit protection
- Thermal protection

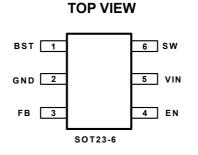

APPLICATIONS

- Distributed Power Systems
- Automotive Systems
- High Voltage Power Conversion
- Industrial Power Systems
- Battery Powered Systems

TYPICAL APPLICATION

Efficiency vs Load Current (Vout = 5V)




ORDER INFORMATION

DEVICE ¹⁾	PACKAGE	TOP MARKING ²⁾
XR5026SOTB#TRPBF	SOT23-6	XRBHX
	30123-0	YWLLL

Notes: : :

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATING¹¹¹⁾⁾⁾

VIN, EN, SW Pin	0.3V to 44V
BST Pin	SW-0.3V to SW+5V
All other Pins	
Junction Temperature ^{2) 3)}	150°C
Lead Temperature	
Storage Temperature	65°C to +150°C

RECOMMENDED OPERATING CONDITIONS

Input Voltage VIN	
Output Voltage Vout	0.8V to VIN-3V
Operating Junction Temperature	-40°C to 125°C

THERMAL PERFORMANCE⁴⁴⁴⁾⁾⁾

Note

- 1) Exceeding these ratings may damage the device.
- **2)** The XR5026 guarantees robust performance from -40°C to 150°C junction temperature. The junction temperature range specification is assured by design, characterization and correlation with statistical process controls.

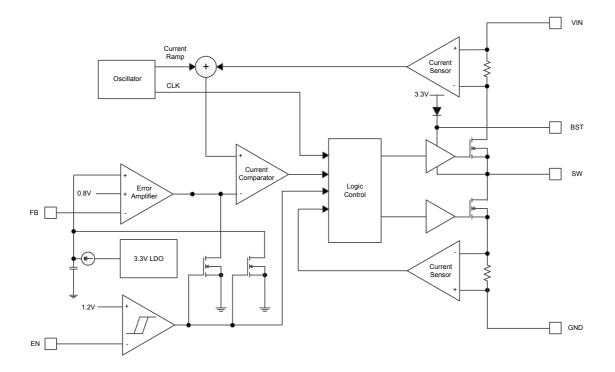
 $\boldsymbol{\theta}_{\boldsymbol{\mu}}$

- 3) The XR5026 includes thermal protection that is intended to protect the device in overload conditions. Thermal protection is active when junction temperature exceeds the maximum operating junction temperature. Continuous operation over the specified absolute maximum operating junction temperature may damage the device.
- 4) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS

V_{IN} = 12V, T_A = 25°C, unless otherwise stated.						
Item	Symbol	Condition	Min.	Тур.	Max.	Units
V _{IN} Under voltage Lockout Threshold	V _{IN_MIN}	V _{IN} rising		4.3		V
V _{IN} Under voltage Lockout Hysteresis	Vin_min_hyst			250		mV
Shutdown Supply Current	I _{SD}	V _{EN} =0V		0.1	1	μA
Supply Current	lq	V _{EN} =5V, V _{FB} =1.2V		40	60	μA
Feedback Voltage	V_{FB}	4.7V <v<sub>VIN<40V</v<sub>	776	800	824	mV
Top Switch Resistance ⁵⁾	R _{DS(ON)T}			500		mΩ
Bottom Switch Resistance ⁵⁾	R _{DS(ON)B}			220		mΩ
Top Switch Leakage Current	I _{LEAK_TOP}	V _{IN} =40V, V _{EN} =0V, V _{SW} =0V			1	uA
Bottom Switch Leakage Current	I _{LEAK_BOT}	V _{IN} = V _{SW} = 40V, V _{EN} =0V			1	uA
Top Switch Current Limit	I _{LIM_TOP}	Minimum Duty Cycle		1.7		А
Switch Frequency	f _{SW}			1.1		MHz
Minimum On Time	T _{ON_MIN}			80		ns
Minimum Off Time	$T_{OFF}MIN$	V _{FB} =0V		100		ns
EN shut down threshold voltage	$V_{\text{EN_TH}}$	V _{EN} rising, FB=0V	1.18	1.3	1.42	V
EN shut down hysteresis	V _{EN_HYST}			40		mV
Thermal Shutdown ⁵⁾	T _{TSD}			135		°C
Thermal Shutdown hysteresis ⁵⁾	T _{TSD_HYST}			15		°C

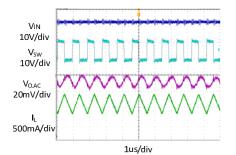
Note:

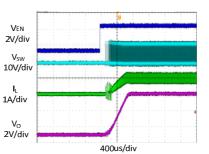

5) Guaranteed by design.

PIN DESCRIPTION

Pin	Name	Description
1 BST	Bootstrap pin for top switch. A 0.1uF or larger capacitor should be connected between this pin	
1 BST		and the SW pin to supply current to the top switch and top switch driver.
2	GND	Ground.
2	FB	Output feedback pin. FB senses the output voltage and is regulated by the control loop to
3	ГВ	800mV. Connect a resistive divider at FB.
4	EN	Drive EN pin high to turn on the regulator and low to turn off the regulator.
5	5 VIN	Input voltage pin. VIN supplies power to the IC. Connect a 4.7V to 40V supply to VIN and
5	VIIN	bypass VIN to GND with a suitably large capacitor to eliminate noise on the input to the IC.
6	0.000	SW is the switching node that supplies power to the output. Connect the output LC filter from
0	SW	SW to the output load.

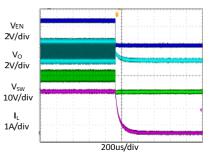
BLOCK DIAGRAM

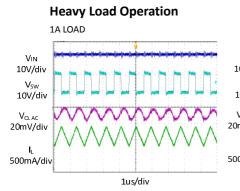


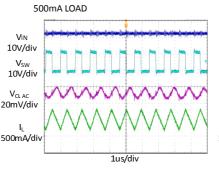

TYPICAL PERFORMANCE CHARACTERISTICS

Vin = 12V, Vout = 5V, L = 4.7μ H, Cout = 10μ F, TA = $+25^{\circ}$ C, unless otherwise noted

Steady State Test VIN=12V, Vout=5V Iout=1A

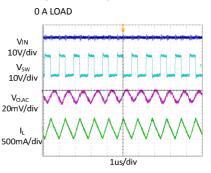


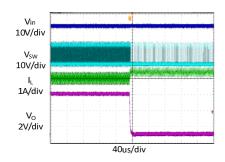

Startup through Enable VIN=12V, Vout=5V Iout=1A (Resistive load)

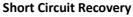


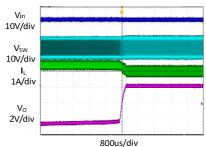
Shutdown through Enable

VIN=12V, Vout=5V Iout=1A (Resistive load)

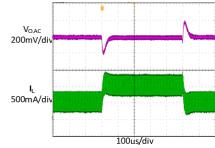



Medium Load Operation


Light Load Operation


Short Circuit Protection

VIN=12V, Vout=5V Iout=1A- Short



VIN=12V, Vout=5V lout= Short-1A

Load Transient

500mA LOAD \rightarrow 1A LOAD \rightarrow 500mA LOAD

FUNCTIONAL DESCRIPTION

The XR5026 is a synchronous, current-mode, step-down regulator. It regulates input voltages from 4.7V to 40V down to an output voltage as low as 0.8V, and is capable of supplying up to 1A of load current.

Current-Mode Control

The XR5026 utilizes current-mode control to regulate the output voltage. The output voltage is measured at the FB pin through a resistive voltage divider and the error is amplified by the internal transconductance error amplifier.

Output of the internal error amplifier is compared with the switch current measured internally to control the output current.

Continuous Conduction Mode

The XR5026 operates in continuous conduction mode. At light load, the inductor current will reach negative current to keep the fixed frequency.

Shut-Down Mode

The XR5026 shuts down when voltage at EN pin is below 0.3V. The entire regulator is off and the supply current consumed by the XR5026 drops below 0.1uA.

Power Switch

N-Channel MOSFET switches are integrated on the XR5026 to down convert the input voltage to the regulated output voltage. Since the top MOSFET needs a gate voltage great than the input voltage, a boost capacitor connected between BST and SW pins is required to drive the gate of the top switch. The boost capacitor is charged by the internal 3.3V rail when SW is low.

Vin Under-Voltage Protection

A resistive divider can be connected between Vin and ground, with the central tap connected to EN, so that when Vin drops to the pre-set value, EN drops below 1.2V to trigger input under voltage lockout protection.

Output Current Run-Away Protection

At start-up, due to the high voltage at input and low voltage at output, current inertia of the output inductance can be easily built up, resulting in a large start-up output current. A valley current limit is designed in the JW5026 so that only when output current drops below the valley current limit can the top power switch be turned on. By such control mechanism, the output current at start-up is well controlled.

Output Short Protection

When output is shorted to ground, output current rapidly reaches its peak current limit and the top power switch is turned off. Right after the top power switch is turned off, the bottom power switch is turned on and stay on until the output current falls below the valley current limit. When output current is below the valley current limit, the top power switch will be turned on again and if the output short is still present, the top power switch is turned off when the peak current limit is reached and the bottom power switch is turned on. This cycle goes on until the output short is removed and the regulator comes into normal operation again.

Thermal Protection

When the temperature of the XR5026 rises above 135°C, it is forced into thermal shut-down.

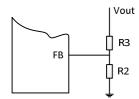
Only when core temperature drops below 120°C can the regulator becomes active again.

APPLICATION INFORMATION

Output Voltage Set

The output voltage is determined by the resistor divider connected at the FB pin, and the voltage ratio is:

$$V_{FB} = V_{OUT} \cdot \frac{R_3}{R_2 + R_3}$$


where VFB is the feedback voltage and VOUT is the output voltage.

Choose R_3 around $2.1 k \Omega,$ and then R_2 can be calculated by:

$$R_2 = R_3 \cdot \left(\frac{V_{OUT}}{0.8V} - 1\right)$$

The following table lists the recommended values.

VOUT(V)	R2(kΩ)	R3(kΩ)
2.5	4.99	11
3.3	2.4	7.5
5	2.1	11.2

Input Capacitor

The input capacitor is used to supply the AC input current to the step-down converter and maintaining the DC input voltage. The ripple current through the input capacitor can be calculated by:

$$I_{C1} = I_{LOAD} \cdot \sqrt{\frac{V_{OUT}}{V_{IN}} \cdot \left(1 - \frac{V_{OUT}}{V_{IN}}\right)}$$

where ILOAD is the load current, VOUT is the output voltage, VIN is the input voltage.

Thus the input capacitor can be calculated by the following equation when the input ripple voltage is determined.

$$C_{1} = \frac{I_{\text{LOAD}}}{f_{\text{s}} \cdot \Delta V_{\text{IN}}} \cdot \frac{V_{\text{OUT}}}{V_{\text{IN}}} \cdot \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}\right)$$

where C1 is the input capacitance value, fs is the

switching frequency, $\triangle V_{IN}$ is the input ripple current.

The input capacitor can be electrolytic, tantalum or ceramic. To minimizing the potential noise, a small X5R or X7R ceramic capacitor, i.e. 0.1uF, should be placed as close to the IC as possible when using electrolytic capacitors.

A 4.7uF ceramic capacitor is recommended in typical application, and an extra 47uF electrolytic capacitor is needed if hot-plug is required.

Output Capacitor

The output capacitor is required to maintain the DC output voltage, and the capacitance value determines the output ripple voltage. The output voltage ripple can be calculated by:

$$\Delta V_{\text{OUT}} = \frac{V_{\text{OUT}}}{f_{\text{s}} \cdot L} \cdot \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}\right) \cdot \left(R_{\text{ESR}} + \frac{1}{8 \cdot f_{\text{s}} \cdot C_2}\right)$$

where C₂ is the output capacitance value and RESR is the equivalent series resistance value of the output capacitor.

The output capacitor can be low ESR electrolytic, tantalum or ceramic, which lower ESR capacitors get lower output ripple voltage.

The output capacitors also affect the system stability and transient response, and a 10uF

ceramic capacitor is recommended in typical application.

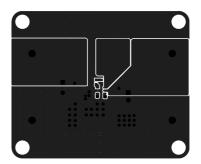
Inductor

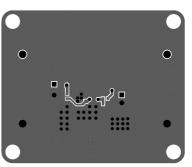
The inductor is used to supply constant current to the output load, and the value determines the ripple current which affect the efficiency and the output voltage ripple. The ripple current is typically allowed to be 30% of the maximum switch current limit, thus the inductance value can be calculated by:

$$L = \frac{V_{OUT}}{f_{s} \cdot \Delta I_{L}} \cdot \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$

where VIN is the input voltage, VOUT is the output voltage, fs is the switching frequency, and \triangle IL is the peak-to-peak inductor ripple current.

External Boostrap Capacitor

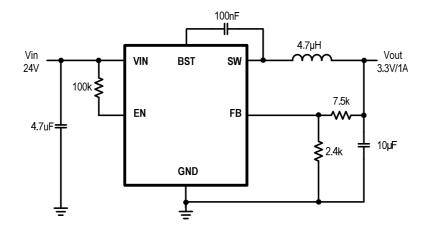

A boostrap capacitor is required to supply voltage to the top switch driver. A 0.1uF low ESR ceramic capacitor is recommended to connected to the BST pin and SW pin.


PCB Layout Note

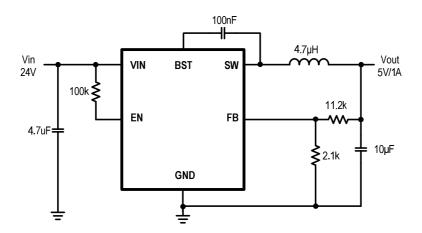
For minimum noise problem and best operating performance, the PCB is preferred to following the guidelines as reference.

 Place the input decoupling capacitor as close to JW5026 (VIN pin and PGND) as possible to eliminate noise at the input pin. The loop area formed by input capacitor and GND must be minimized.

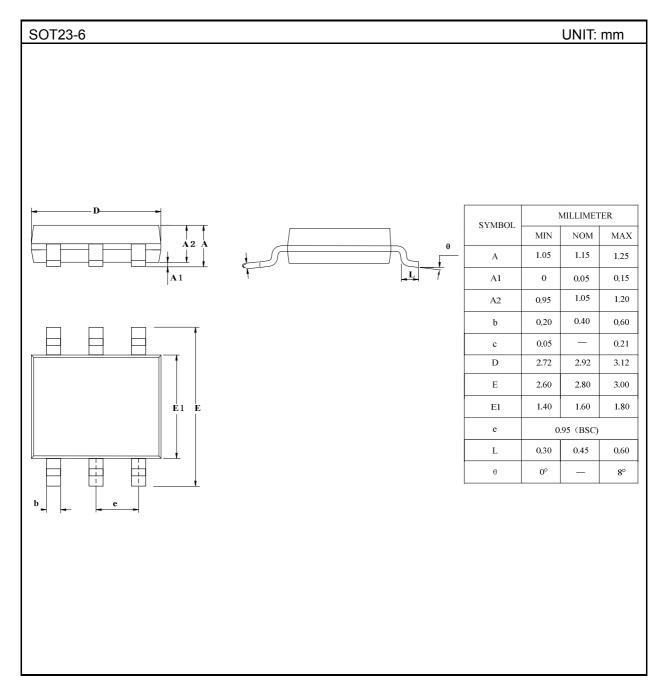
- 2. Put the feedback trace as far away from the inductor and noisy power traces as possible.
- 3. The ground plane on the PCB should be as large as possible for better heat dissipation



REFERENCE DESIGN


Reference 1:

V_{IN} : 24 V V_{OUT}: 3.3V I_{OUT} : 0~1A


Reference 2:

V_{IN} : 24V V_{OUT}: 5V I_{OUT}: 0~1A

PACKAGE OUTLINE

