

带充放电管理的两路LED驱动芯片

特性

- ❖ 通过改变 S 引脚状态,有两种输出模式选择 S 引脚悬空: L1, L2 同时输出,模式切换为 100%-25%-8HZ 闪-OFF:
 - S 引脚接地: L1, L2 分别输出,模式切换为 L1 100%-L1 25%-L1 8HZ-L2 100%-OFF;
- ❖ 单路最大 0.4 A 驱动电流
- ❖ 高达 600mA 的充电电流
- ❖ 三段式充电管理、自动再充电
- ❖ 精度达到 1%的 4.2V 预设充电终止电压
- ❖ 电池防反接保护、电池过放保护、充电过热 保护、输入欠压闭锁保护

应用范围

- ❖ 手电筒
- **❖** LED 照明
- ❖ 电池充放电管理
- ❖ 其它手持设备

描述

YX8284 是一款完整的采用单节锂离子电池供电的两路 LED 多功能驱动芯片。其内部集成了锂电池充放电管理电路,可提供高达 600mA的充电电流、每路 0.4A 的放电电流及充放电保护功能,可驱动两路 LED 同时全亮、25%亮、暴闪和单路 L1 100%、25%、暴闪、L2 100%及循环的轻触切换控制。

YX8284 内部集成了电池过放保护功能,当电池电压低于 2.7V 时,YX8284 进入过放保护状态,此时电池端的漏电小于 0.1μA,可有效延长电池的放电时间。

YX8284 内部集成了专用于锂电池的保护功能电路,可防止充电过程中的过充、过温等异常情况对电池和芯片的损坏,YX8284 内部集成有防电池反接保护电路,可有效防止电池安装过程导致反接引起的芯片损坏。

YX8284采用绿色环保的SOP8封装。

YX8284可工作于-40°C to +85°C。

典型应用

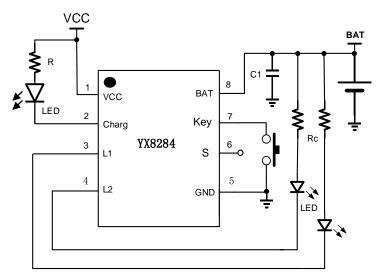
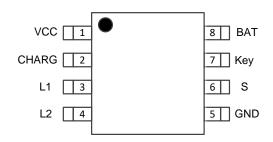


图 1. 典型应用电路



订购信息

器件型号	订购号	封装描述	存储温度	封装标记	包装选择	包装数量
YX8284	YX8284S08NR	SOP8	-65°C to +125°C	YX8284 BBO**	Tape and Reel	3000

引脚信息

YX8284

SOP8

表 1. 引脚描述

引脚	名称	引脚功能描述
1	VCC	充电电压输入端,可接外部适配器
2	CHARG	充电指示灯引脚
3	L1	功率LED输入脚
4	L2	功率LED输入脚
5	GND	公共地
6	S	亮灯模式切换脚
7	Key	外接轻触开关到GND,功能切换
8	BAT	电池正极接入端

S脚设置亮灯模式:

S	初始	按第1下键	按第2下 键	按第3下 键	按第4下 键	按第5下 键
悬空	灭	L1 L2 100%	L1 L2 25%	L1 L2 8Hz	OFF	/
接地	灭	L1_100%	L1_25%	L1_8HZ	L2_100%	OFF

绝对最大额定范围

描述	范围	单位	
电源电压 (IN)	-0.3 ~ 6	V	
电池电压 (BAT)	-4.2 ~ 5	V	
其它引脚	-0.3 ~ 6	V	
存储温度范围	-65 ~ +125	°C	
结温	150	°C	
焊接温度	260 (10s)	°C	
静态放电(ESD)	HBM (Human Body Mode)	2000	V
一	MM (Machine Mode)	200	V

热损耗信息

描述	范围	单位	
封装热阻 (θ _{JA})	SOP8	160	°C/W
功耗, P _D @T _A =25°C	SOP8	0.6	W

推荐工作条件

描述	范围	单位
工作结温	-40 ~ 125	°C
工作环境温度	-40 ~ 85	°C
电源电压	+4.0 ~ +5.5	V
亮灯连续输出电流 (每路)	0.4	A

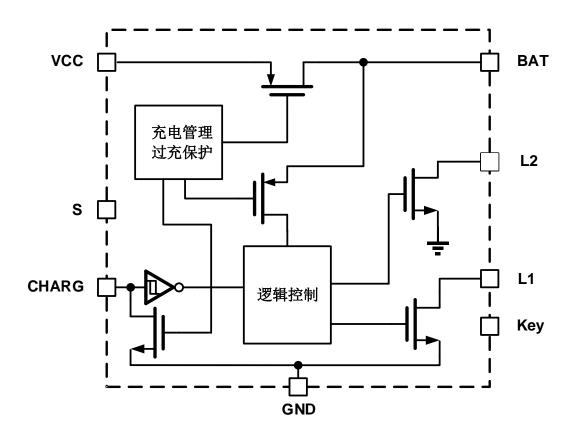
Ver1.02 4 www.szxunrui.cn

电特性

Vcc = 5.0V, BAT=3.7V TA=25°C, 除非特别说明

参数	符号	测试条件	最小值	典型值	最大值	单位
输入电源电压	V_{CC}		4.5	5	5.5	V
VCC端静态电流	I_Q	充电模式(GND的输出电流)		500		μΑ
		待机模式(充电终止)		55		μΑ
稳定输出(浮充)电压	V _{FLOAT}	$0^{\circ}\text{C} \leq \text{T}_{A} \leq 85^{\circ}\text{C}, \text{IBAT} = 40\text{mA}$	4.158	4.200	4.242	V
BAT 引脚电流	$I_{ m BAT}$	充电电流	528 600 672	672	mA	
	IBAI	睡眠模式, V _{CC} = 0V		-1		μΑ
涓流充电电流	I _{TRIKL}	V _{BAT} < V _{TRIKL} ,	60	75	90	mA
涓流充电门限电压	V _{TRIKL}	VBAT 上升		2.9		V
涓流充电迟滞电压	V _{TRHYS}			100		mV
VCC欠压闭锁门限电压	V_{UV}	Vcc从低到高,BAT=2.5V		3.7		V
VCC欠压闭锁迟滞电压	V _{UVHYS}			300		mV
VCC-VBAT闭锁门限电	V_{ASD}	Vcc从低到高,BAT=3.7V		100		mV
压		Vcc从高到低		50		mV
C/10终止电流门限	I _{TERM}			80		mA
CHRG引脚输入电流	V _{CHRG}	驱动红光LED (VF=2.2V)		4		mA
再充电电池门限电压迟 滞	ΔV_{RECHR}	V _{FLOAT} - V _{RECHRG}		150		mV
充电指示灯频率				1		Hz
温度保护点	T_{LIM}			145		°C
功率FET导通电阻	Ron			700		mΩ
软启动时间	tss	$I_{BAT} = 0$ to $I_{BAT} = 600$ mA		30		us
再充电比较器滤波时间	t _{RECHARGE}	V _{BAT} 高至低		1.8		ms
终止比较器滤波时间	t _{TERM}	IBAT降至ICHG/10		1.8		ms

Ver1.02 5 www.szxunrui.cn


电特性(续)

 $V_{cc} = 5.0V$, BAT=3.7V, TA=25°C, 除非特别说明

参数	符号	测试条件	最小值	典型值	最大值	单位
BAT输入电压	V_{BAT}		2.8		5.0	V
过放保护电压	V_{OD}	VBAT下降		2. 7		V
静态电流	Ιq	关机状态		0.1		11.Λ
空载电流	Io	常亮模式		220		uA
驱动电流	Iin	单路		400		mA
LED驱动MOS导通电 阻	R _{DSON}	I _{LED} =400mA,单路		560		mΩ
25%亮工作频率	$\mathrm{f}_{\scriptscriptstyle 25\%}$			250		Hz
暴闪频率	$f_{\scriptscriptstyle F}$			8		Hz
KEY触发延时	$T_{\mathtt{KEY}}$			15		ms
KEY输入低电平	$V_{\scriptscriptstyle TEMP-H}$			35		$%V_{DD}$
KEY输入高电平	$V_{\scriptscriptstyle TEMP-L}$			65		$%V_{DD}$

功能框图

功能描述

YX8284 是一款完整的采用单节锂离子电池供电的 LED 轻触四功能驱动芯片。其内部集成了锂电池充放电管理电路,可提供高达 600mA 的充电电流、每路 0.4A 的放电电流及充电保护功能,可驱动两路 LED 实现全亮、25%亮、暴闪和单路亮灯的轻触四功能切换控制。

YX8284内部集成了专用于锂电池的保护功能电路,可防止充电过程中过充、过温等异常情况对电池和芯片的损坏,YX8284内部集成有防电池反接保护电路,可有效防止电池安装过程导致反接引起的芯片损坏。

LED限流电阻的设置

通过在LED上串联一个电阻,实现LED电流的调节。实际LED电流的设定可采用以下公式:

$$I_{\text{LED}} = \frac{V_{\text{BAT}} - V_F}{Rc + R_{\text{DSON}}}$$

其中

VBAT为电池电压:

V_F为LED的导通电压;

Rc为外接串联电阻:

RDSON为NMOS导通电阻。

正常充电循环

当VCC引脚电压升至UVLO门限电平以上时,一个充电循环开始。如果BAT引脚电平低于2.9V,则充电器进入涓流充电模式。在该模式中,YX8284提供约C/10充电电流,以便将电池电压提升到一个安全的电平,从而实现满电流充电。

当BAT引脚电压升至2.9V以上时,充电器进入恒流模式,此时向电池提供600mA恒定的充电电流。当BAT引脚电压达到接近浮充电压(4.2V)时,YX8284进入恒压充电模式,且充电电流开

始减小。当充电电流降至C/10,充电循环结束。 在正常充电或充满电但VCC端电源未移除时,

LED功能可以照常使用。

热限制

如果芯片温度升高到预设值145℃,内部热反馈 环路将减小充电电流。该功能可防止YX8284过 热,并允许用户提高给定电路板功率处理能力 的上限而没有损坏YX8284的风险。

欠压闭锁(UVLO)

一个内部欠压闭锁电路对输入电压进行监控, 并在VCC升至欠压闭锁门限以上之前使充电器 保持在停机模式。UVLO电路将使充电器保持在 停机模式。如果UVLO比较器发生跳变,则在 VCC升至比电池电压高100mV之前充电器将不 会退出停机模式。

自动再充电

一旦充电循环被终止,YX8284立即采用一个具有1.8ms滤波时间的比较器来对BAT引脚上的电压进行连续监控。当电池电压降至4.05V(大致对应于电池容量的80%至90%)以下时,充电循环重新开始。这确保了电池被维持在(或接近)一个满充电状态,并免除了进行周期性充电循环启动的需要。

过放保护

当电池电压低于2.7V, YX8284进入过放保护功能,芯片处于微功耗状态,电池漏电小于0.1μA,可有效延长电池的放电时间,保护电池的使用寿命。当对电池进行充电时,YX8284从过放保护状态恢复到正常工作状态。

充电指示

Chrg引脚是一个开漏输出引脚,外接LED到 VCC,用于充电状态指示。,充电状态下,CHRG 输出1Hz的脉冲信号,LED闪烁,充满状态下, CHRG输出低电平,LED全亮。其它状态下, CHRG输出高阻态,LED灭.

SOP8封装的单灯指示

充电器状态	红色 LED
光电静状态 	CHRG
充电	1Hz闪烁
充电终止	亮

功耗考虑

芯片结温依赖于环境温度、PCB布局、负载和封 装类型等多种因素。

功耗与芯片结温可根据以下公式计算:

 $P_D = R_{DS(ON)} \times I_{OUT}^2$

根据PD结温可由以下公式求得:

 $T_J=P_D\times\theta_{JA}+T_A$

其中: T_J 是芯片结温, T_A 是环境温度, θ_{JA} 是封装。

典型应用(注:PCB 布线时应注意充电地线尽量短)

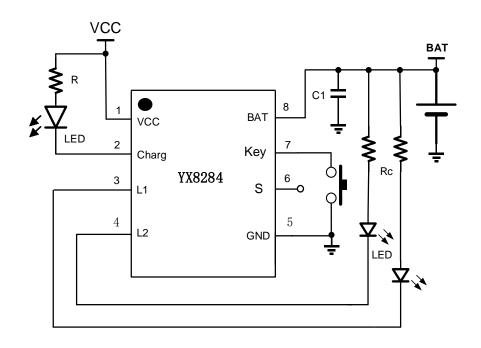
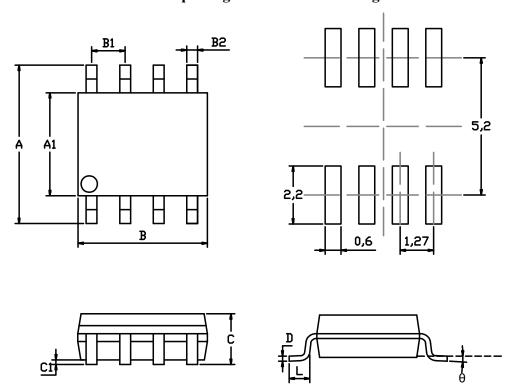



图 2. 典型应用电路

封装描述

SOP8 package mechanical drawing

SOP8 package mechanical data

	dimensions					
symbol	milli	meters	inches			
	min	max	min	max		
A	5.8	6.2	0.2283	0.2441		
A1	3.8	4	0.1496	0.1575		
В	4.8	5	0.1890	0.1969		
B1	1.	27	0.0500			
B2	0.31	0.51	0.0122	0.0201		
С		1.75MAX		0.0689MAX		
C1	0.1	0.25	0.0039	0.0098		
L	0.4	1.27	0.0157	0.0500		
D	0.13	0.25	0.0051	0.0098		
θ	0°	8°	0°	8°		

本公司有权对所提供的产品和服务,不定期进行更正、修改、改进或其它更改,恕不另行通知 客户在下订单前请获取最新的产品规格书,并验证这些信息是否相符。